On Cauchy Problems of Caputo Fractional Differential Inclusion with an Application to Fractional Non-Smooth Systems

نویسندگان

چکیده

In this innovative study, we investigate the properties of existence and uniqueness solutions to initial value problem Caputo fractional differential inclusion. study problems, considered case convex non-convex multivalued maps. We obtained results for both cases by means appropriate fixed point theorem. Furthermore, corresponding was also determined. Finally, took a non-smooth system, modified Murali–Lakshmanan–Chua (MLC) fractional-order circuit as an example verify its conditions, through several sets simulation results, discuss implications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

Fractional Cauchy problems on bounded domains

Fractional Cauchy problems replace the usual first-order time derivative by a fractional derivative. This paper develops classical solutions and stochastic analogues for fractional Cauchy problems in a bounded domain D ⊂ Rd with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordinator whose scaling index corresponds to the order of the fractional ti...

متن کامل

existence of solutions of boundary value problems for caputo fractional differential equations on time scales

‎in this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{t}^{kappa^{2}}}:=j,;;1

متن کامل

Stability of Solutions to Impulsive Caputo Fractional Differential Equations

Stability of the solutions to a nonlinear impulsive Caputo fractional differential equation is studied using Lyapunov like functions. The derivative of piecewise continuous Lyapunov functions among the nonlinear impulsive Caputo differential equation of fractional order is defined. This definition is a natural generalization of the Caputo fractional Dini derivative of a function. Several suffic...

متن کامل

Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative

This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11030653